INSTRUCTION MANUAL

05103, 05106, and 05305

R.M. Young Wind Monitors

Revision: 11/05

Copyright © 1984-2005
Campbell Scientific, Inc.
Warranty and Assistance

The 05103, 05106, and 05305 R.M. YOUNG WIND MONITORS are warranted by CAMPBELL SCIENTIFIC, INC. to be free from defects in materials and workmanship under normal use and service for twelve (12) months from date of shipment unless specified otherwise. Batteries have no warranty. CAMPBELL SCIENTIFIC, INC.'s obligation under this warranty is limited to repairing or replacing (at CAMPBELL SCIENTIFIC, INC.'s option) defective products. The customer shall assume all costs of removing, reinstalling, and shipping defective products to CAMPBELL SCIENTIFIC, INC. CAMPBELL SCIENTIFIC, INC. will return such products by surface carrier prepaid. This warranty shall not apply to any CAMPBELL SCIENTIFIC, INC. products which have been subjected to modification, misuse, neglect, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied, including warranties of merchantability or fitness for a particular purpose. CAMPBELL SCIENTIFIC, INC. is not liable for special, indirect, incidental, or consequential damages.

Products may not be returned without prior authorization. The following contact information is for US and International customers residing in countries served by Campbell Scientific, Inc. directly. Affiliate companies handle repairs for customers within their territories. Please visit www.campbellsci.com to determine which Campbell Scientific company serves your country. To obtain a Returned Materials Authorization (RMA), contact CAMPBELL SCIENTIFIC, INC., phone (435) 753-2342. After an applications engineer determines the nature of the problem, an RMA number will be issued. Please write this number clearly on the outside of the shipping container. CAMPBELL SCIENTIFIC's shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA#____
815 West 1800 North
Logan, Utah 84321-1784

CAMPBELL SCIENTIFIC, INC. does not accept collect calls.
05103, 05106, 05305 Table of Contents

PDF viewers note: These page numbers refer to the printed version of this document. Use the Adobe Acrobat® bookmarks tab for links to specific sections.

1. General Description ... 1

2. Specifications ... 1

3. Installation .. 3

4. Wiring .. 5

5. Example Programs .. 6
 5.1 Wind Speed ... 6
 5.2 Wind Direction .. 6
 5.3 Wind Vector Processing Instruction ... 7
 5.4 Example Programs ... 7
 5.4.1 CR10X Example Program ... 8
 5.4.2 CR1000 Example Program ... 9

6. Maintenance .. 9

7. Troubleshooting .. 10
 7.1 Wind Direction .. 10
 7.2 Wind Speed .. 10

8. References .. 11

Figures

3-1. Wind Monitor Mounted to the 019ALU Crossarm 4
3-2. Wind Monitor Mounted to a CM200 Series Crossarm
 with PN 17953 Nu-Rail ... 4
3-3. Wind Monitor Mounted to a CM200 series Crossarm
 with CM220 Right Angle Mounting Kit 5
Tables

1-1. Recommended Lead Lengths ... 1
4-1. Connections to Campbell Scientific Dataloggers 5
5-1. Wind Speed Multiplier (with Configuration Code 21)........................... 6
5-2. Parameters for Wind Direction... 7
5-3. Wiring for Example Programs... 7
05103, 05106, and 05305 R.M. Young
Wind Monitors

1. General Description

The 05103, 05106, and 05305 Wind Monitor sensors are used to measure horizontal wind speed and direction. The 05305 is a high performance version of the 05103 designed to meet PSD specifications for air quality applications. The 05106 is recommended for marine applications.

Wind speed is measured with a helicoid-shaped, four-blade propeller. Rotation of the propeller produces an AC sine wave signal with frequency proportional to wind speed.

Vane position is transmitted by a 10K ohm potentiometer. With a precision excitation voltage applied, the output voltage is proportional to wind direction.

Lead length for the Wind Monitor is specified when the sensor is ordered. Table 1-1 gives the recommended lead length for mounting the sensor at the top of the tripod/tower with a 019ALU or CM202 crossarm (CM220 or PN 17953 required with CM202).

<table>
<thead>
<tr>
<th>TABLE 1-1. Recommended Lead Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM6</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>10'</td>
</tr>
</tbody>
</table>

The R.M. Young Instruction Manual is also shipped with the sensor, which includes operating principles, installation and alignment guide, and calibration information.

2. Specifications

<table>
<thead>
<tr>
<th>Wind Speed</th>
<th>05103 and 05106</th>
<th>05305</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>0-134 mph (0-60 m s(^{-1}))</td>
<td>0-90 mph (0-40 m s(^{-1}))</td>
</tr>
<tr>
<td>Accuracy:</td>
<td>±0.6 mph (±0.3 m s(^{-1}))</td>
<td>±0.4 mph (±0.2 m s(^{-1}))</td>
</tr>
<tr>
<td>Starting threshold:</td>
<td>2.2 mph (1.0 m s(^{-1})) 05103; 2.4 mph (1.1 m s(^{-1})) 05106</td>
<td>0.9 mph (0.4 m s(^{-1}))</td>
</tr>
<tr>
<td>Gust survival:</td>
<td>220 mph (100 m s(^{-1}))</td>
<td>100 mph (45 m s(^{-1}))</td>
</tr>
<tr>
<td>Distance constant (63% recovery):</td>
<td>8.9 ft (2.7 m)</td>
<td>6.9 ft (2.1 m)</td>
</tr>
<tr>
<td>Output: ac voltage (3 pulses per revolution), 1800 rpm (90 Hz) = 19.7 mph (8.8 m s(^{-1}))</td>
<td>ac voltage (3 pulses per revolution) 1800 rpm (90 Hz) = 20.6 mph (9.2 m s(^{-1}))</td>
<td></td>
</tr>
<tr>
<td>Wind Direction</td>
<td>05103 and 05106</td>
<td>05305</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Range:</td>
<td>0-360° mechanical, 355° electrical (5° open)</td>
<td>Same</td>
</tr>
<tr>
<td>Accuracy:</td>
<td>±3°</td>
<td>±3°</td>
</tr>
<tr>
<td>Starting threshold at 10° displacement:</td>
<td>2.2 mph (1.1 m s⁻¹)</td>
<td>1.0 mph (0.5 m s⁻¹)</td>
</tr>
<tr>
<td>Delay distance (50% recovery):</td>
<td>4.3 ft (1.3 m)</td>
<td>3.9 ft (1.2 m)</td>
</tr>
<tr>
<td>Damping ratio:</td>
<td>0.25</td>
<td>0.45</td>
</tr>
<tr>
<td>Damped natural wavelength:</td>
<td>24.3 ft (7.4 m)</td>
<td>16.1 ft (4.9 m)</td>
</tr>
<tr>
<td>Undamped natural wavelength:</td>
<td>23.6 ft (7.2 m)</td>
<td>14.4 ft (4.4 m)</td>
</tr>
<tr>
<td>Output:</td>
<td>Analog dc voltage from potentiometer – resistance 10 kΩ, linearity 0.25%, life expectancy 50 million revolutions.</td>
<td>Same</td>
</tr>
</tbody>
</table>

Power
Switched excitation voltage supplied by the datalogger.

Physical

Operating Temperature
-50° to +50°C, assuming non-riming conditions
-50° to +50°C, assuming non-riming conditions

Dimensions

Overall: 14.6” H x 21.7” L (37 cm x 55 cm)
15.0” H x 25.6” L (38 cm x 65 cm)

Main housing Diameter: 2.0” (5 cm)
Same

Propeller Diameter: 7.1” (18 cm)
7.9” (20 cm)

Mounting Pipe: 1.34” (34 mm) OD; standard 1.0” IPS schedule 40
Same

Weight (shipping approx.)
3.2 lbs (5.5 lbs); 2.5 lbs (5.5 lbs);
1.5 kg (2.3 kg); 1.1 kg (2.3 kg)

Manufactured by RM Young (Traverse City, MI) and cabled by Campbell Scientific for use with our dataloggers.
The black outer jacket of the cable is Santoprene® rubber. This compound was chosen for its resistance to temperature extremes, moisture, and UV degradation. However, this jacket will support combustion in air. It is rated as slow burning when tested according to U.L. 94 H.B. and will pass FMVSS302. Local fire codes may preclude its use inside buildings.

3. Installation

The Wind Monitor mounts to a standard 1” IPS schedule 40 pipe (1.32” O.D). An orientation ring is provided so that the instrument can be removed for maintenance, and reinstalled without loss of the wind direction reference.

A 12” length of unthreaded pipe is shipped with the Wind Monitor for mounting the sensor to the 019ALU crossarm (Figure 3-1), or to a CM200 series crossarm using the PN 17953 Nu-Rail Connector (Figure 3-2) or CM220 Right Angle Mounting Kit (Figure 3-3).

Install the Wind Monitor and orientation ring as follows:

Place the orientation ring followed by the Wind Monitor on the mounting pipe; do not tighten the band clamps yet. Orient the junction box so that it faces South.

Sensor Alignment to True North:

Alignment of the sensor to True North is most easily done with two people after the datalogger has been programmed to measure wind direction. Sighting down the centerline of instrument, point the nose cone to a reference point for True North. While holding this position, rotate the base of the sensor until the datalogger reads 0. Make sure that the indexing pin on the orientation ring is engaged with the notch in the sensor, and tighten both band clamps.
FIGURE 3-1. Wind Monitor Mounted to the 019ALU Crossarm

FIGURE 3-2. Wind Monitor Mounted to a CM200 Series Crossarm with PN 17953 Nu-Rail
4. Wiring

Connections to Campbell Scientific dataloggers are given in Table 4-1. When Short Cut for Windows software is used to create the datalogger program, the sensor should be wired to the channels shown in the wiring diagram created by Short Cut.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>CR9000(X)</th>
<th>CR5000</th>
<th>CR3000</th>
<th>CR1000</th>
<th>CR510</th>
<th>CR500</th>
<th>CR10(X)</th>
<th>21X, CR7</th>
<th>CR23X</th>
<th>CR200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Wind Spd. Signal</td>
<td>Pulse</td>
<td>Pulse</td>
<td>Pulse</td>
<td>P_LL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>Wind Spd. Reference</td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Wind Dir. Signal</td>
<td>SE Analog</td>
<td>SE Analog</td>
<td>SE Analog</td>
<td></td>
<td>SE Analog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>Wind Dir. Excitation</td>
<td>Excitation</td>
<td>Excitation</td>
<td>Excitation</td>
<td></td>
<td>Excitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Wind Dir. Reference</td>
<td></td>
<td></td>
<td>AG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>Shield wire</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Example Programs

This section is for users who write their own programs. A datalogger program to measure this sensor can be created using Campbell Scientific’s Short Cut Program Builder software. You do not need to read this section to use Short Cut.

5.1 Wind Speed

Wind speed is measured with the pulse count instruction. With the pulse count instruction, specify the low level AC configuration code. For dataloggers programmed with Edlog, specify configuration code 21 to output frequency in Hertz.

The expression for wind speed (U) is:

\[U = MX + B \]

where

- \(M \) = multiplier
- \(X \) = number of pulses per second (Hertz)
- \(B \) = offset

Table 5-1 lists the multipliers to obtain miles/hour or meters/second when the pulse count instruction is configured to output Hz (configuration code 21). The helicoid propeller has a calibration that passes through zero, so the offset is zero (Gill, 1973; Baynton, 1976).

<table>
<thead>
<tr>
<th>Model</th>
<th>Miles/Hour Output</th>
<th>Meters/Second Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>05103 or 05106</td>
<td>0.2192</td>
<td>0.0980</td>
</tr>
<tr>
<td>05305</td>
<td>0.2290</td>
<td>0.1024</td>
</tr>
</tbody>
</table>

*When configuration code 11 is used, the multiplier above is divided by the execution interval in seconds.

5.2 Wind Direction

The wind vane is coupled to a 10K potentiometer. The potentiometer has a 5 degree dead band between 355 and 360 degrees, therefore the maximum signal is 355 degrees. The potentiometer is measured with a half bridge measurement instruction, which applies an excitation voltage and makes a Single-Ended voltage measurement. The multiplier converts the measurement result to degrees.

The EX-DEL_SE measurement instruction is used for dataloggers that are programmed with Edlog (e.g. CR10X, CR23X) and the CR200. The measurement result is mV; the multiplier to convert mV to degrees is 355deg/excitation mV.
The BRHalf measurement instruction is used for dataloggers that are programmed with CRBasic (e.g. CR100, CR3000). The measurement result is the measured mV/excitation mV; the multiplier to convert mV/excitation mV to degrees is 355.

The excitation voltage, range codes, and multipliers for the different datalogger types are listed in Table 5-2.

<table>
<thead>
<tr>
<th>TABLE 5-2. Parameters for Wind Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR10(X), CR510, CR200</td>
</tr>
<tr>
<td>CR7, 21X, CR23X</td>
</tr>
<tr>
<td>CR1000</td>
</tr>
<tr>
<td>CR5000, CR3000</td>
</tr>
<tr>
<td>Measurement Range</td>
</tr>
<tr>
<td>2500 mV, slow</td>
</tr>
<tr>
<td>5000 mV, slow/60 Hz</td>
</tr>
<tr>
<td>2500 mV, 60 Hz, reverse excitation</td>
</tr>
<tr>
<td>5000 mV, 60 Hz, reverse excitation</td>
</tr>
<tr>
<td>Excitation Voltage</td>
</tr>
<tr>
<td>2500 mV</td>
</tr>
<tr>
<td>5000 mV</td>
</tr>
<tr>
<td>2500 mV</td>
</tr>
<tr>
<td>5000 mV</td>
</tr>
<tr>
<td>Multiplier</td>
</tr>
<tr>
<td>0.142 deg/mV</td>
</tr>
<tr>
<td>0.071 deg/mV</td>
</tr>
<tr>
<td>355 deg excitation (mV/mV)</td>
</tr>
<tr>
<td>355 deg excitation (mV/mV)</td>
</tr>
<tr>
<td>Offset</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

5.3 Wind Vector Processing Instruction

The Wind Vector output instruction is used to process and store mean wind speed, unit vector mean wind direction, and Standard Deviation of the wind direction (optional) using the measured wind speed and direction samples.

5.4 Example Programs

The following programs measure the Wind Monitor 05103 every 5 seconds, and store mean wind speed, unit vector mean direction, and standard deviation of the direction every 60 minutes. Wiring for the examples is given in Table 5-3.

<table>
<thead>
<tr>
<th>TABLE 5-3. Wiring for Example Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Red</td>
</tr>
<tr>
<td>Black</td>
</tr>
<tr>
<td>Green</td>
</tr>
<tr>
<td>Blue</td>
</tr>
<tr>
<td>White</td>
</tr>
<tr>
<td>Clear</td>
</tr>
</tbody>
</table>
5.4.1 CR10X Example Program

```plaintext
;{CR10X}
*Table 1 Program
  01: 5.0000  Execution Interval (seconds)

1: Pulse (P3)
   1: 1  Reps
   2: 1  Pulse Channel 1
   3: 21 Low Level AC, Output Hz
   4: 3  Loc [ WS_ms ]
   5: 0.098 Multiplier
   6: 0  Offset

2: Excite-Delay (SE) (P4)
   1: 1  Reps
   2: 5  2500 mV Slow Range ; 5000 mV(slow/60 hz) Range for CR23X, 21X, CR7
   3: 1  SE Channel
   4: 1  Excite all reps w/Exchan 1
   5: 2  Delay (0.01 sec units)
   6: 2500 mV Excitation ; 5000 mV for CR23X, 21X, CR7
   7: 4  Loc [ WindDir ]
   8: 0.142 Multiplier ; 0.071 for CR23X, 21X, CR7
   9: 0  Offset

3: If (X<=>F) (P89)
   1: 4  X Loc [ WindDir ]
   2: 3  >=
   3: 360 F
   4: 30 Then Do

4: Z=F x 10^n (P30)
   1: 0  F
   2: 0  n, Exponent of 10
   3: 4  Z Loc [ WindDir ]

5: End (P95)

6: If time is (P92)
   1: 0 Minutes (Seconds --) into a
   2: 60 Interval (same units as above)
   3: 10 Set Output Flag High (Flag 0)

7: Set Active Storage Area (P80)
   1: 1 Final Storage Area 1
   2: 101 Array ID

8: Real Time (P77)
   1: 1220 Year,Day,Hour/Minute (midnight = 2400)
```
5.4.2 CR1000 Example Program

```plaintext
'CR1000
'Declare Variables and Units
Public Batt_Volt
Public WS_ms
Public WindDir

Units Batt_Volt=Volts
Units WS_ms=meters/second
Units WindDir=Degrees

'Define Data Tables
DataTable(Table1,True,-1)
    DataInterval(0,60,Min,10)
    WindVector (1,WS_ms,WindDir,FP2,False,0,0,0)
    FieldNames("WS_ms_S_WVT,WindDir_D1_WVT,WindDir_SD1_WVT")
EndTable

'Main Program
BeginProg
    Scan(5,Sec,1,0)
    'Default Datalogger Battery Voltage measurement Batt_Volt:
    Battery(Batt_Volt)
    '05103 Wind Speed & Direction Sensor measurements WS_ms and WindDir:
    PulseCount(WS_ms,1,1,1,1,0.098,0)
    BrHalf(WindDir,1,mV2500,1,1,1,2500,True,0,_60Hz,355,0) ' mV5000 range, 5000 mV excitation for CR3000 and CR5000 dataloggers
    If WindDir>=360 Then WindDir=0
    'Call Data Tables and Store Data
    CallTable(Table1)
    NextScan
EndProg
```

6. Maintenance

R.M. Young suggests that the anemometer bearings and the potentiometer be inspected at least every 24 months. Only a qualified technician should perform the replacement.

Obtain an RMA number before returning the sensor to Campbell Scientific for service.
7. Troubleshooting

7.1 Wind Direction

Symptom: -9999 or no change in direction

1. Check that the sensor is wired to the Excitation and Single-Ended channel specified by the measurement instruction.

2. Verify that the excitation voltage and Range code are correct for the datalogger type.

3. Disconnect the sensor from the datalogger and use an ohm meter to check the potentiometer. Resistance should be about 10K ohms between the Blue and White wires. The resistance between either the Blue/Green or White/Green wires should vary between about 1K to 11K depending on vane position. Resistance when the vane is in the 5 degree dead band should be about 1M ohm.

Symptom: Incorrect wind direction

1. Verify that the Excitation voltage, Range code, multiplier and offset parameters are correct for the datalogger type.

2. Check orientation of sensor as described in Section 3.

7.2 Wind Speed

Symptom: No wind speed

1. Check that the sensor is wired to the Pulse channel specified by the Pulse count instruction.

2. Disconnect the sensor from the datalogger and use an ohm meter to check the coil. The resistance between the red and black wires should be about 2075 ohms. Infinite resistance indicates an open coil; low resistance indicates a shorted coil.

3. Verify that the Configuration Code, and Multiplier and Offset parameters for the Pulse Count instruction are correct for the datalogger type.

Symptom: Wind speed does not change

1. For the dataloggers that are programmed with Edlog, the input location for wind speed is not updated if the datalogger is getting “Program Table Overruns”. Increase the execution interval (scan rate) to prevent overruns.
8. References

Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)
815 West 1800 North
Logan, Utah 84321
UNITED STATES
www.campbellsci.com
info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)
PO Box 2450
Somerset West 7129
SOUTH AFRICA
www.csafrica.co.za
sales@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)
PO Box 444
Thuringowa Central
QLD 4812 AUSTRALIA
www.campbellsci.com.au
info@campbellsci.com.au

Campbell Scientific do Brazil Ltda. (CSB)
Rua Luisa Crapsi Orsi, 15 Butantã
CEP: 005543-000 São Paulo SP BRAZIL
www.campbellsci.com.br
suporte@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)
11564 - 149th Street NW
Edmonton, Alberta T5M 1W7
CANADA
www.campbellsci.ca
dataloggers@campbellsci.ca

Campbell Scientific Ltd. (CSL)
Campbell Park
80 Hathern Road
Shepshed, Loughborough LE12 9GX
UNITED KINGDOM
www.campbellsci.co.uk
sales@campbellsci.co.uk

Campbell Scientific Ltd. (France)
Miniparc du Verger - Bat. H
1, rue de Terre Neuve - Les Ulis
91967 COURTABOEUF CEDEX
FRANCE
www.campbellsci.fr
campbell.scientific@wanadoo.fr

Campbell Scientific Spain, S. L.
Psg. Font 14, local 8
08013 Barcelona
SPAIN
www.campbellsci.es
info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or International representative.